A Sieve M-theorem for Bundled Parameters in Semiparametric Models, with Application to the Efficient Estimation in a Linear Model for Censored Data.
نویسندگان
چکیده
In many semiparametric models that are parameterized by two types of parameters - a Euclidean parameter of interest and an infinite-dimensional nuisance parameter, the two parameters are bundled together, i.e., the nuisance parameter is an unknown function that contains the parameter of interest as part of its argument. For example, in a linear regression model for censored survival data, the unspecified error distribution function involves the regression coefficients. Motivated by developing an efficient estimating method for the regression parameters, we propose a general sieve M-theorem for bundled parameters and apply the theorem to deriving the asymptotic theory for the sieve maximum likelihood estimation in the linear regression model for censored survival data. The numerical implementation of the proposed estimating method can be achieved through the conventional gradient-based search algorithms such as the Newton-Raphson algorithm. We show that the proposed estimator is consistent and asymptotically normal and achieves the semiparametric efficiency bound. Simulation studies demonstrate that the proposed method performs well in practical settings and yields more efficient estimates than existing estimating equation based methods. Illustration with a real data example is also provided.
منابع مشابه
A Sieve M-theorem for Bundled Parameters in Semiparametric Models, with Application to the Efficient Estimation in a Linear Model for Censored Data By
In many semiparametric models that are parameterized by two types of parameters—a Euclidean parameter of interest and an infinite-dimensional nuisance parameter—the two parameters are bundled together, that is, the nuisance parameter is an unknown function that contains the parameter of interest as part of its argument. For example, in a linear regression model for censored survival data, the u...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملKernel Ridge Estimator for the Partially Linear Model under Right-Censored Data
Objective: This paper aims to introduce a modified kernel-type ridge estimator for partially linear models under randomly-right censored data. Such models include two main issues that need to be solved: multi-collinearity and censorship. To address these issues, we improved the kernel estimator based on synthetic data transformation and kNN imputation techniques. The key idea of this paper is t...
متن کاملLocally Efficient Estimation in Censored Data Models: Theory and Examples
In many applications the observed data can be viewed as a censored high dimensional full data random variable X . By the curse of dimensionality it is typically not possible to construct estimators which are asymptotically efficient at every probability distribution in a semiparametric censored data model of such a high dimensional censored data structure. We provide a general method for constr...
متن کاملBayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests
A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function. As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals of statistics
دوره 39 6 شماره
صفحات -
تاریخ انتشار 2011